\{DV été $\left.2018 n^{01}\right\}$ - poujouly.net
Exercice n 01 . Etude d'on schèma d'application constructerr
Q1: Onreconnait un amplinon inverseur donc

$$
V_{S 1}=\left(1+\frac{R_{2}}{R_{1}}\right) \cdot V_{I N}=10 \cdot V_{I N}
$$

Q_{2} : On reconnait un ampli inversew donc

$$
V_{S 2}=-\frac{R_{h}}{R_{3}} \cdot V_{I N}=-10 V_{I N}
$$

$Q_{3:} V_{\text {diff }}=V_{S 1}-V_{S 2}=10 V_{I N}-\left(-10 V_{I N}\right)=20 . V_{\text {IN }}$ cequi just: Fie bien le gain de 20
Exersice $n^{\circ} 2$: Mélimélo sur les montags Fondamentaux
$Q_{1} V_{2}=\left(1+\frac{R_{3}}{R_{2}}\right) \cdot V_{1} \quad Q_{2} \quad ? \Leftrightarrow 10 k \Omega \quad Q_{3} ? \Leftrightarrow 5 k_{\Omega}$
$Q_{4} S_{3}=\frac{R_{2}}{R_{2}+?} \times \frac{R_{k}}{R_{k}+5 R_{k}} \cdot 10 S_{3} \Leftrightarrow \frac{R_{2}}{R_{2+} ?}=\frac{6}{10}$
$\Leftrightarrow 10 R_{2}=6 R_{2}+6 \cdot ? \Leftrightarrow ?=\frac{4 R_{2}}{6}$
$Q_{5} V_{1}=\frac{1}{2} \times\left(1+\frac{600}{200}\right) \times 0, S V=1 \mathrm{~V}$
Q6 $S_{2}=-\frac{R_{e q} 1}{R_{e q} 2} \cdot E_{a}$ avec $R_{\text {eq } 1}=2 R_{2}+R_{a} \quad R_{\text {eq }} 2=\frac{R_{a} R_{2}}{R_{a}+R_{2}}$

Q7 $\quad S_{2}=\left(1+\frac{R_{a}}{R_{2}}\right) \times\left(-\frac{R_{1}}{R_{6}}\right) \times E_{1}$
Q8 $V_{2}=\left(1+\frac{R_{2}+R_{3}}{R_{1}}\right) \cdot V_{1}$
Qg $S=-\frac{\frac{R_{2 \times 2} 2 R_{2}}{R_{c}+2 R_{2}}}{R_{c}} \times 3 \mathrm{~V}=-2 \mathrm{~V}$
$Q_{10} V b=\left(1+\frac{2 R}{R}\right) \times \frac{2 R}{2 R+R} \cdot V_{a}$

$$
=2 . \mathrm{Va}
$$

Exercicen ${ }^{\circ} 3$ - Uncompte rendu incomplet
Q Voie (Hz $6 \operatorname{diveIV} \quad V_{\text {pie }} \mathrm{CH}_{1} 2,5 \operatorname{div}_{\mathrm{L}} 200 \mathrm{mV}$ \rightarrow amplification $=12$ non inverseur
$Q_{2} R_{a}=1 k_{\Omega}$
Q_{3}

$R b=11 k_{\Omega}$ marron marron orange

Exercice $n^{\circ} \%$: Conception d'un montage

$$
Q_{1}: V_{+}=\frac{\frac{S V}{R}+\frac{V_{i n}}{\alpha R}}{\frac{1}{R}+\frac{1}{\alpha R}}=\frac{S V_{+} V_{\text {in }} / \alpha}{1+1 / \alpha}
$$

$$
Q_{2}: V_{\text {out }}=\left(1+\frac{k R}{R}\right) V_{+}=(l+k) \cdot \frac{S V_{+} \operatorname{Vin} / \alpha}{1+1 / \alpha}
$$

$P_{\text {our }} V_{\text {in }}=-I V \Rightarrow$ Vout $=O V$
il Fout donc que $s v-1 v / \alpha=0$ soit $\alpha=0,2$

$$
P_{\text {our }} V_{\text {in }}=1 V \Rightarrow V_{\text {out }}=5 V
$$

i(Fast donc que $S V=(1+k) \times \frac{S V+S V}{6}$

$$
1+k=3 \Rightarrow k=2
$$

Simulation avec $R_{3}=10 \mathrm{k} \Omega$ et $R_{3}=20 \mathrm{k} \Omega$

$$
R_{1}=10 \mathrm{k} \Omega \text { et } R_{2}=2 \mathrm{k} \Omega
$$

Voir Fichier complété,

