Devoir N°6: Petite synthèse des thèmes abordés au cours du semestre 2

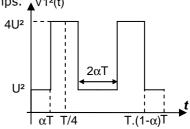
S.POUJOULY

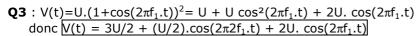
http://poujouly.net

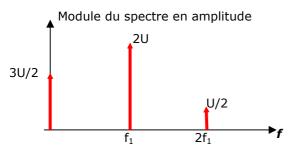
ELEMENTS DE CORRECTION

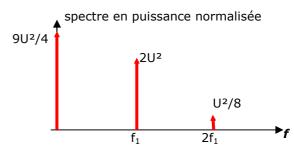
Analyse des signaux

Seff = A.
$$\sqrt{\frac{5}{4}}$$

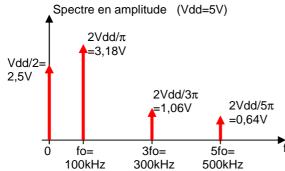

Q2 : Par définition V1eff²=<V1²>. On représente donc V1² au cours du temps. AV1²(t)


$$= (1/T).(U^2.4\alpha T + 4U^2.(T-4\alpha T))$$


donc V1eff² =
$$\langle V1^2 \rangle$$
 = $4U^2.(1-3\alpha)$


comme on souhaite V2eff = V1eff, il faut que

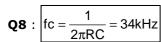
V2eff² =
$$(2U/\sqrt{2})^2$$
 = V1eff²= $4U^2$.(1-3 α) il faut donc α =1/62



soit $\hat{U} = \sqrt{2.10^{-20}}$ donc pour un signal sinusoïdal UdBV = 20.log donc pour UdBV=-20dBV $|\hat{U}|$ = 141,4mV

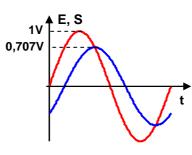
Q5:

Q6: La valeur crête du signal triangulaire $U = \sqrt{3}$. Ueff = 5,2V Composante fondamentale (50kHz)


Harmonique de rang 3 (150kHz) Harmonique de rang 5 (250kHz) $U1=8U/\pi^2=4,21V$

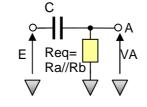
 $U3=8U/(3\pi)^2=0,47V$ $U5=8U/(5\pi)^2=0,17V$ U1dBV= 9,47dBV U3dBV = -9,6dBVU5dBV = -18,5dBV

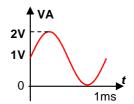
Systèmes linéaires du 1er et du 2nd ordre, Filtrage électrique


Q7:

Ordre	Passe bas	Passe bande	Passe haut
1 ^{er}	$\frac{1}{1 + \frac{jf}{fc}}$ fc: fréquence de coupure		$\frac{\frac{jf}{fc}}{1+\frac{jf}{fc}}$ fc : fréquence de coupure
2 nd	$\frac{1}{1+2m\cdot\frac{jf}{fo}+\left(\frac{jf}{fo}\right)^2}$ fo : fréquence propre m : coefficient d'amortissement	$\frac{\frac{jf}{Q.fo}}{1 + \frac{jf}{Q.fo} + \left(\frac{jf}{fo}\right)^2}$ fo : fréquence propre ou centrale $Q : facteur de qualité Q = \frac{1}{2m}$ $Q = \frac{fo}{BP_{-3dB}}$	$\frac{\left(\frac{jf}{fo}\right)^2}{1+2m\cdot\frac{jf}{fo}+\left(\frac{jf}{fo}\right)^2}$ fo : fréquence propre m : coefficient d'amortissement

Comme on se trouve à la fréquence de coupure le signal de sortie est 0,707 légèrement atténué (-3dB $\leftrightarrow \frac{1}{\sqrt{2}}$) et le déphasage entre la sortie et l'entrée

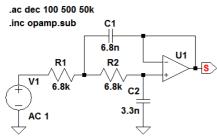

est de $-\frac{\pi}{4}$ Le module est $\frac{1}{\sqrt{1+\left(\frac{f}{fc}\right)^2}}$ donc à 68kHz l'atténuation est $\frac{de-7dB}{}$

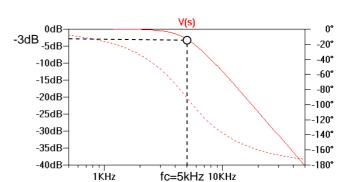


Q9: En continu
$$VA = Vcc \cdot \frac{Rb}{Ra + Rb}$$
 donc $VA = 1V$

Schéma équivalent en alternatif :

donc
$$fc = \frac{1}{2\pi Re \, qC} = \frac{1}{2\pi \frac{Ra.Rb}{Ra + Rb} \cdot C} = 10,8Hz$$




- Comme f=1kHz>>fc on peut considérer que le condensateur est équivalent à un "fil" en alternatif, donc on retrouve la composante alternative superposée avec la composante continue comme le montre le chronogramme ci-dessus.
- **Q10**: Il s'agit d'une structure de Sallen & Key avec $m = \sqrt{\frac{C2}{C1}}$ et $fo = \frac{1}{2\pi R\sqrt{C1.C2}}$

Comme on désire le gain le plus plat dans la bande passante il s'agit alors d'une réponse typique de Butterworth donc pour un 2nd ordre m=0,707. Dans ces conditions la fréquence propre fo correspond à la fréquence de coupure que l'on souhaite ici fixer à 5kHz.

En sélectionnant les condensateurs dans la série E12 et les résistances dans la série E24, on peut choisir C2=3,3nF C1=6,8nF et $R=6,8k\Omega$

Vérification Dimensionnement Sallen & Key m=0,707 fo=fc=5kHz

Q11:
$$Q = \frac{fo}{BP_{-3dB}}$$
 donc $Q = 5$

fo =
$$\frac{1}{2\pi\sqrt{L.C}}$$
 donc $C = \frac{1}{L.(2\pi fo)^2}$ soit $C = 556pF$ (560pF serie E12)

à f=fo le circuit LC est un circuit ouvert donc on se retrouve avec un simple pont de résistance donc le gain maximum est de -6dB

Q12:

Pour éterminer l'ordre, on utilise les abaques en posant x=20kHz/5kHz=4 et en recherchant le point d'intersection avec -40dB. On trouve un ordre n=3 Dans ces conditions la fonction de transfert est de la forme :

$$T(jf) = \frac{10^{\frac{30}{20}}}{1 + \frac{jf}{fc}} \cdot \frac{1}{1 + \frac{jf}{fc} + \left(\frac{jf}{fc}\right)^2}$$

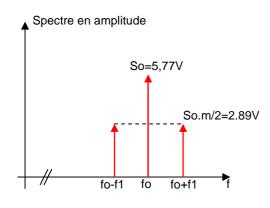
Transmission de l'information

Q13: Longueur L = $\lambda/4$ avec λ = c/f C=3.108m/s et f=224,5.106 Hz soit L = 33,4cm

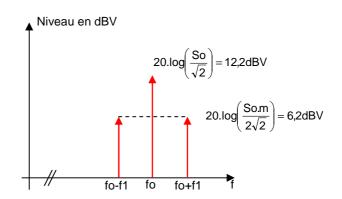
Q14:

Fol1=(821+455)kHz donc Fol1=1276kHz
$$\rightarrow$$
 Fimage1 = (1276+455)kHz donc Fimage1=1731kHz Fol2=(821-455)kHz donc Fol2=366kHz \rightarrow Fimage2 = (455-366)kHz donc Fimage2=89kHz

Q15:


Expression typique d'un signal modulé MAPC : $S(t)=So.[1+m.cos(2\pi.f_1.t)].cos(2\pi.fo.t)$ Le tracé du spectre en puissance normalisée permet d'exprimer la valeur efficace S_{eff} . En effet :

Seff² =
$$\frac{\text{So}^2}{2} + 2 \cdot \frac{\left(\frac{\text{So.m}}{2}\right)^2}{2} = \text{So}^2 \cdot \left(\frac{1}{2} + \frac{\text{m}^2}{4}\right)$$
 donc par déduction So = $\frac{\text{Seff}}{\sqrt{\frac{1}{2} + \frac{\text{m}^2}{4}}}$


Dans notre cas Seff=3V et m=0.75 donc $\boxed{So=3.74V}$.

L'amplitude crête maximale du signal modulé est telle que Smax=So(1+m) soit Smax=6,56V

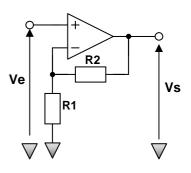
Q16 -

fo=70kHz et f1=1kHz

Montages à amplificateurs opérationnel & comparateurs de tension

Q17:

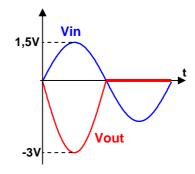
Le produit gain bande nécessaire est donc

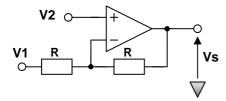

GBW =
$$10^{\frac{45}{20}} \cdot 5 \text{kHz} = 889,1 \text{kHz}$$

Le Slew rate doit être au minimum égal à :

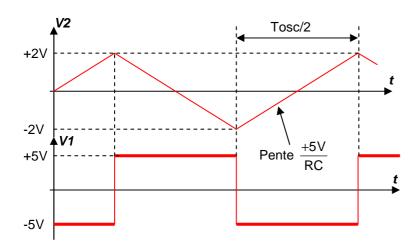
Sr =
$$\hat{S}.2\pi.\text{fmax} = 10^{\frac{45}{20}} \cdot 10.10^{-3} \cdot 2.\pi.5.10^{3} \text{ V/s} = 0.056 \text{V/µs}$$
 ce qui ne représente aucune contrainte !!

Donc un AOP classique peut convenir parfaitement.


$$1 + \frac{R2}{R1} = 10^{\frac{45}{20}} = 177.8$$
 donc par exemple $\boxed{R2 = 390 \text{k}\Omega \text{ et } R1 = 2,2 \text{k}\Omega}$


Q18:

Lorsque Vin>0 D1 passante D2 bloquée


Lorsque Vin<0 D1 bloquée D2 passante

Q19:

Q20:

$$\frac{4V}{Tosc/2} = \frac{5V}{RC}$$

$$Fosc = \frac{5}{8.RC}$$

Fosc = 10kHz donc RC= $62,5\mu s$

Par exemple $R=16k\Omega$

et C=3,9nF