Module SEI: Travaux dirigés S2

TD N°4: Corrigé partie travail personnel

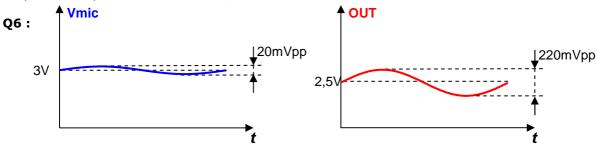
Chapitre 2 - S2 SEI - 2018

S.POUJOULY

@poujouly

http://poujouly.net

Exercice n°1: Un préamplificateur pour microphone


Q1: En continu les condensateurs se comportent comme des circuits ouverts. VIN+=2,5V et VOUT=2,5V

 $\bf Q2$: L'action du condensateur de 100pF en parallèle avec la résistance de 100k Ω permet de réaliser un filtre passe bas dont la fréquence de coupure est de 15,9kHz

Q3: L'action du condensateur de 1μ F en série avec la résistance de $10k\Omega$ permet de réaliser un filtre passe haut dont la fréquence de coupure est de 15,9Hz

Q4 : Entre ces 2 fréquences de coupures, l'amplification apportée par ce montage est de 11.

Q5: Le schéma équivalent formé par le condensateur de $0.01\mu F$ et des 2 résistances de $1M\Omega$ en régime alternatif est un circuit passe haut avec une résistance équivalent de $500k\Omega$ ($1M\Omega$ // $1M\Omega$). La fréquence de coupure correspondante est donc 31,8Hz.

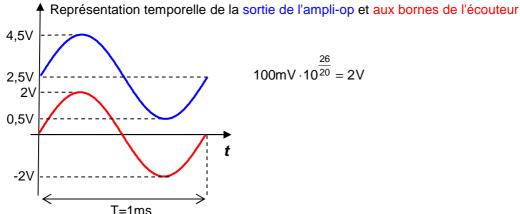
Exercice n°2: Un amplificateur pour casque audio

Q1: (1) high pass

(2)
$$\frac{1}{2\pi RIN.CIN}$$

(3)COUT

(4)
$$\frac{1}{2\pi RLoad.Cout}$$


(5)

49,7Hz

Q2: RIN=47k
$$\Omega$$
 CIN=677nF (680nF) RF = RIN·10²⁰/₂₀ = 937k Ω (910k Ω)

Q3 : Polarisation autour de 2,5V pour un fonctionnement de l'ampli avec une tension d'alimentation simple. Un simple pont diviseur de tension avec 2 résistances identiques et un condensateur de découplage suffit.

Q4:

La puissance obtenue aux bornes de l'écouteur est $P = \frac{Ueff^2}{320} = \frac{\ddot{U}^2}{2.320} = 62,5mW$

Cette valeur est totalement cohérente avec la puissance de 60mW annoncée sur les indications proposées dans la documentation constructeur.